
Next Generation Testing

Cédric Beust, Google
Alexandru Popescu, InfoQ

QCon, San Francisco

Alexandru Popescu, InfoQ

QCon
San Francisco

November 2007

Menu

1) TestNG features that we like

QCon, San Francisco

2) Designing for testability

TestNG Overview

• Annotations based
• Groups
• Dependent test methods

QCon, San Francisco

• Dependent test methods
• Parallel/Multithreaded testing

– Thread pools, timeouts

• Customizable runtime configuration
• Flexible plug-in API

TestNG features
we like

• Groups

• Data Providers

QCon, San Francisco

• Data Providers

• Dependent tests

→ Groups

• Data providers

QCon, San Francisco

• Data providers

• Dependent tests

TestNG Groups

• Problem: configure what tests should be
run

• Most of the time, you do this:

QCon, San Francisco

• Most of the time, you do this:
– either by artificial grouping (directory

based, name based, etc.)
– creating configuration like classes that

describe the inclusion rules (same as
suite() in xUnit)

Groups with TestNG

• Test method:
@Test(groups={"one", "two"})

• Configuration method:

QCon, San Francisco

• Configuration method:
@Before and @After methods can also
belong to groups

• Define special group lifecycle methods:
@BeforeGroup/@AfterGroup

Running groups

• Supported by all TestNG launchers
– Command line
– Ant

QCon, San Francisco

– Eclipse (launch configurations can be
shared between the team members)

– IntelliJ IDEA plug-ins

• Exclude running specific groups

Example
public class GroupTest {

@Test(groups={"one", "two"}
public void commonTest() {}

@Test(groups={"one"})
public void groupOneOnly() {}

QCon, San Francisco

public void groupOneOnly() {}

@Test(groups={"two"})
public void groupTwoOnly() {}

@BeforeGroups(groups={“one”})
public void beforeGroupOne() {

// run only before group “one”
}

}

Group categories

Examples of group names:

• test type: unit, functional, integration, system, acceptance.
• test size: small, medium, large
• functional description: web, gui, html, jsp, servlet, database,

QCon, San Francisco

• functional description: web, gui, html, jsp, servlet, database,
back-end.

• speed of the test: slow, fast.
• procedural: check-in, smoke-test, milestone, release.
• platform: os.win32, os.linux, os.mac-os
• hardware: single-core, multi-core, dual-cpu, memory.1gig,

memory.10gig
• runtime schedule: week-days, weekends, nightly, monthly

Hints on using groups
• Groups are not mutually exclusive

@Test(groups = { "fast", "database"})
@Test(groups = { "slow", "database" })

• Use regular naming pattern for groups
@Test(groups = { "os.linux.debian" })

QCon, San Francisco

@Test(groups = { "os.linux.debian" })
@Test(groups = { "database.table.ACCOUNTS" })
@Test(groups = { "database.ejb3.connection" })

• TestNG has the ability to parse regular expressions to locate the
groups you want to run

- running the groups "database.*" will run all the database tests
- or narrow down the set of tests to "database.ejb3.*"

• Groups

→ Data Providers

QCon, San Francisco

→ Data Providers

• Dependent tests

Data Providers

• Data Providers allow you to separate
data from the logic of your tests

• Data can come from Java, flat file,

QCon, San Francisco

• Data can come from Java, flat file,
database, network, etc…

• You can have as many Data Providers
as you want (e.g. “string-provider”, “url-
provider”, etc…)

What makes a Data Provider?

• Use the @DataProvider annotated a
method with @DataProvider

• Method must return Object[][]

QCon, San Francisco

• Method must return Object[][]
• Name the data provider to be used by

your test method:
@Test(dataProvider=“clusters”)

• TestNG will handle the type conversions

@DataProvider example

Directory made of .properties file:
cluster1.properties, cluster2.properties,

etc…

QCon, San Francisco

etc…

Property file example: (host=port)
169.1.3.2=6552
169.5.12.3=2002

@DataProvider Example

@Test(dataProvider=”hosts")

public void verifyHost(Properties settings){

Enumeration keys = settings.keys();

while (keys.hasMoreElements()) {

QCon, San Francisco

String host =

settings.keys.nextElement();

String port =

settings.getProperty(host);

// perform test on host/port

}

}

@DataProvider Example
@DataProvider(name = “hosts”)
public Object[][] loadHosts() {

File rootDir = new File("root");
String[] names= rootDir.list(new FilenameFilter() {

public boolean accept(File dir, String name) {
return name.endsWith(".properties");

QCon, San Francisco

}
});

Object[][] result = new Object[names.length][];
for(int i= 0; i < names.length; i++) {

Properties prop = new Properties();
prop.load(new FileInputStream(new File(rootDir, nam es[i])));
result[i] = new Object[] {prop};

}
return result;

}

• Groups

• Data providers

QCon, San Francisco

• Data providers

→ Dependent tests

Method dependency

• Problem:
– certain test methods depend on the success of previous

methods
– you don't want to duplicate your efforts while writing tests

QCon, San Francisco

• Example: DAO testing:
– One method to launch the server: embedded DB/connect to

DB
– One test method to test if the table to work on is available
– Methods to verify functionality insert(), findById(), update(),

delete()

Example

public class DaoTest {
@BeforeMethod initConnections() {}
@Test public void insert() {}
@Test public void findById() {}
@Test public void deleteById() {}

QCon, San Francisco

@Test public void deleteById() {}

}

Problems:
• initConnections() fails
• 4 FAILURES
• What we want: 1 FAILURE, 3 SKIPS

Example
public class DaoTest {

MyDao dao;

@BeforeClass public void initConnections() {}

@Test public void isSetupOk() {

assert dao.getConnection() != null;

}

QCon, San Francisco

@Test(dependsOnMethods={"isSetupOk"})

public void insert() {}

@Test(dependsOnMethods={"insert"})

public void findById() {}

}

Problems:
• Doesn’t scale very well
• Breaks if you refactor

Example
public class DaoTest {

@BeforeClass public void initConnections() {}

@Test(groups= "prepare")
public void isSetupOk() {

assert dao.getConnection() != null;
// ...

}

QCon, San Francisco

@Test(groups="create", dependsOnGroups="prepare")
public void insert() {}

@Test(groups= "retrieve", dependsOnGroups = "create")
public void findById() {}

}

Benefits:
• Method names can change
• Easy to add future test methods

What groups give you

• a way to order methods;
• order not just individual methods, but

collections of methods grouped logically

QCon, San Francisco

collections of methods grouped logically
• a mechanism to accurately report

failures due to failed dependency
• a way to exactly reproduce the failure

scenario

Conclusion

• Groups, Data Providers and Dependent
Tests are very popular features

QCon, San Francisco

• TestNG has many more features, see
for yourself!

http://testng.org

Designing for Testability

QCon, San Francisco

Do we need to design for testability?

Unfortunately, yes!

QCon, San Francisco

Unfortunately, yes!

Requires forethought and giving up on
certain ideas

What’s so hard about testing?

QCon, San Francisco

What’s so hard about testing?

Identifying the enemy

Statics! In all shapes: singletons, global
variables, static fields

QCon, San Francisco

variables, static fields

Extreme encapsulation

Enemy #1 : Statics

Hard to test:

void f() {

QCon, San Francisco

void f() {

Database db =

Database.getInstance();

db.query("DELETE FROM ACCOUNTS");

}

Statics

Better

void f(Database db) {

QCon, San Francisco

void f(Database db) {

db.query(”…”);

}

Statics

Product:
db = Database.getInstance();

QCon, San Francisco

f(db)

Test:
db = new Mock(Database.class);

f(db);

Even better

Use a dependency injection framework!

Highly recommended: Guice ("juice"), by Bob Lee.

QCon, San Francisco

void f(@Inject Database db) {

db.query("...");

}

Spring also an option

Enemy # 2:
Extreme encapsulation

Everything private and final

QCon, San Francisco

Reasonable from an OO perspective

Adversely impacts testing

Questioning existing
practices

Beware of certain design patterns such as
Singleton or Abstract Factory

QCon, San Francisco

Singleton or Abstract Factory

It's okay to open up a class to make it
more testable (package protected is
your friend!)

And now…

The big elephant in the room…

QCon, San Francisco

Test-Driven Development!!!

Test-driven development

Show of hands:

Who…

QCon, San Francisco

Who…

1) Writes tests first most of the time?
2) Writes tests last most of the time?
3) Does a mix of both?

TestNG and TDD

Perfect project for a TDD approach

Yet, only ~10% of the tests I wrote were

QCon, San Francisco

Yet, only ~10% of the tests I wrote were
developed using TDD

Is it just me?

Problems with TDD

Promotes micro-design over macro-design

Hard to apply in practice

QCon, San Francisco

Hard to apply in practice

No clear evidence that it produces better
designs than "tests last"

TDD promotes micro-design

Focuses on the immediate problem at
hand

QCon, San Francisco

"Simplest thing that could possibly work"
can lead to short-sighted designs

Risk of churn (throw-away code)

TDD is hard to apply in
practice

Forces you to a design that might be good for
testing but not optimal for your users (or even
yourself)

QCon, San Francisco

yourself)

Makes you spend a lot of time with compilation
and IDE errors (negates IDE benefits)

Counter-intuitive

TDD: good or evil?

Great to train junior programmers or non-
test savvy developers

QCon, San Francisco

test savvy developers

Not so great for more experienced
developers

Conclusion

When in doubt, remember that tests are
for users, not for developers

QCon, San Francisco

Be open to giving up on some established
software engineering practices

Don't feel bad if you're not using TDD

One last thing:

QCon, San Francisco

Available from Amazon.

Thank you for your attention!

QCon, San Francisco

Questions?

